Discrete Time Finite Element Transfer Matrix Method Development for Modeling and Decentralized Control

نویسندگان

  • Nick Cramer
  • Sean Swei
  • Kenny Cheung
چکیده

The current emphasis on increasing aeronautical efficiency is leading the way to a new class of lighter more flexible airplane materials and structures, which unfortunately can result in aeroelastic instabilities. To effectively control the wings deformation and shape, appropriate modeling is necessary. Wings are often modeled as cantilever beams using finite element analysis. The drawback of this approach is that large aeroelastic models cannot be used for embedded controllers. Therefore, to effectively control wings shape, a simple, stable and fast equivalent predictive model that can capture the physical problem and could be used for in-flight control is required. The current paper proposes a Discrete Time Finite Element Transfer Matrix (DT-FETMM) model beam deformation and use it to design a regulator. The advantage of the proposed approach over existing methods is that the proposed controller could be designed to suppress a larger number of vibration modes within the fidelity of the selected time step. We will extend the discrete ∗Address all correspondence to this author time transfer matrix method to finite element models and present the decentralized models and controllers for structural control. Nomenclature An = Acceleration integration scaling value for the nth node Bn = Acceleration integration constant for the nth node Ci j = Galerkin finite element damping matrix sub-block Dn = Velocity integration constant for the nth node En = Velocity integration scaling value for the nth node fn = Control input force at nth node Fn = Forward propagation matrix of the right force for the nth node Hn = Reverse propagation matrix of the left force for the nth node Jn = Reverse propagation matrix for the nth node Ki j = Galerkin finite element elastic matrix sub-block Mi j = Galerkin finite element mass matrix sub-block Pn = Forward propagation matrix for the nth node Qn = Transfer matrix from left boundary condition to nth node Tn = Transfer matrix from right boundary condition to nth node vn = Propagation vector 1 Copyright c © 2015 by ASME xn = nth node position states ẋn = nth node velocity states ẍn = nth node acceleration states τn = Internal forces at the nth node for either left or right side

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free and Forced Transverse Vibration Analysis of Moderately Thick Orthotropic Plates Using Spectral Finite Element Method

In the present study, a spectral finite element method is developed for free and forced transverse vibration of Levy-type moderately thick rectangular orthotropic plates based on first-order shear deformation theory. Levy solution assumption was used to convert the two-dimensional problem into a one-dimensional problem. In the first step, the governing out-of-plane differential equations are tr...

متن کامل

Modeling Time Resolved Light Propagation Inside a Realistic Human Head Model

Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...

متن کامل

Studying the Mechanical and Thermal Properties of Polymer Nanocomposites Reinforced with Montmorillonite Nanoparticles Using Micromechanics Method

In this study, the mechanical and thermal behavior of the nano-reinforced polymer composite reinforced by Montmorillonite (MMT) nanoparticles is investigated. Due to low cost of computations, the 3D representative volume elements (RVE) method is utilized using ABAQUS finite element commercial software. Low density poly ethylene (LDPE) and MMT are used as matrix and nanoparticle material, respec...

متن کامل

Dynamic Analysis of Offshore Wind Turbine Towers with Fixed Monopile Platform Using the Transfer Matrix Method

In this paper, an analytical method for vibrations analysis of offshore wind turbine towers with fixed monopile platform is presented. For this purpose, various and the most general models including CS, DS and AF models are used for modeling of wind turbine foundation and axial force is modeled as a variable force as well. The required equations for determination of wind turbine tower response ...

متن کامل

A Method for Determination of the Fundamental Period of Layered Soil Profiles

In this study, a method is proposed to determine the fundamental period of layered soil profiles. A model considering the layered soil as shear type structure is used. At first, the soil profile is divided into substructures. Then, the stiffness matrices of the substructures considered as the equivalent shear structures are assembled according to the Finite Element Method. Thereinafter, the sti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015